3.95 \(\int \frac{x \sqrt{d^2-e^2 x^2}}{d+e x} \, dx\)

Optimal. Leaf size=62 \[ -\frac{(2 d-e x) \sqrt{d^2-e^2 x^2}}{2 e^2}-\frac{d^2 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{2 e^2} \]

[Out]

-((2*d - e*x)*Sqrt[d^2 - e^2*x^2])/(2*e^2) - (d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0407475, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {785, 780, 217, 203} \[ -\frac{(2 d-e x) \sqrt{d^2-e^2 x^2}}{2 e^2}-\frac{d^2 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{2 e^2} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[d^2 - e^2*x^2])/(d + e*x),x]

[Out]

-((2*d - e*x)*Sqrt[d^2 - e^2*x^2])/(2*e^2) - (d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e^2)

Rule 785

Int[(x_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^m*e^m, Int[(x*(a + c*x^2)^(m
 + p))/(a*e + c*d*x)^m, x], x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[
m, 0] && EqQ[m, -1] &&  !ILtQ[p - 1/2, 0]

Rule 780

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(((e*f + d*g)*(2*p
 + 3) + 2*e*g*(p + 1)*x)*(a + c*x^2)^(p + 1))/(2*c*(p + 1)*(2*p + 3)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x \sqrt{d^2-e^2 x^2}}{d+e x} \, dx &=\frac{\int \frac{x \left (d^2 e-d e^2 x\right )}{\sqrt{d^2-e^2 x^2}} \, dx}{d e}\\ &=-\frac{(2 d-e x) \sqrt{d^2-e^2 x^2}}{2 e^2}-\frac{d^2 \int \frac{1}{\sqrt{d^2-e^2 x^2}} \, dx}{2 e}\\ &=-\frac{(2 d-e x) \sqrt{d^2-e^2 x^2}}{2 e^2}-\frac{d^2 \operatorname{Subst}\left (\int \frac{1}{1+e^2 x^2} \, dx,x,\frac{x}{\sqrt{d^2-e^2 x^2}}\right )}{2 e}\\ &=-\frac{(2 d-e x) \sqrt{d^2-e^2 x^2}}{2 e^2}-\frac{d^2 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{2 e^2}\\ \end{align*}

Mathematica [A]  time = 0.0665321, size = 57, normalized size = 0.92 \[ \frac{(e x-2 d) \sqrt{d^2-e^2 x^2}-d^2 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{2 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[d^2 - e^2*x^2])/(d + e*x),x]

[Out]

((-2*d + e*x)*Sqrt[d^2 - e^2*x^2] - d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e^2)

________________________________________________________________________________________

Maple [B]  time = 0.054, size = 140, normalized size = 2.3 \begin{align*}{\frac{x}{2\,e}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}+{\frac{{d}^{2}}{2\,e}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}}-{\frac{d}{{e}^{2}}\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}-{\frac{{d}^{2}}{e}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-e^2*x^2+d^2)^(1/2)/(e*x+d),x)

[Out]

1/2/e*x*(-e^2*x^2+d^2)^(1/2)+1/2/e*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))-d/e^2*(-(d/e+x)^
2*e^2+2*d*e*(d/e+x))^(1/2)-d^2/e/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-e^2*x^2+d^2)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.57045, size = 127, normalized size = 2.05 \begin{align*} \frac{2 \, d^{2} \arctan \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{e x}\right ) + \sqrt{-e^{2} x^{2} + d^{2}}{\left (e x - 2 \, d\right )}}{2 \, e^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-e^2*x^2+d^2)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

1/2*(2*d^2*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + sqrt(-e^2*x^2 + d^2)*(e*x - 2*d))/e^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{- \left (- d + e x\right ) \left (d + e x\right )}}{d + e x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-e**2*x**2+d**2)**(1/2)/(e*x+d),x)

[Out]

Integral(x*sqrt(-(-d + e*x)*(d + e*x))/(d + e*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.23454, size = 58, normalized size = 0.94 \begin{align*} -\frac{1}{2} \, d^{2} \arcsin \left (\frac{x e}{d}\right ) e^{\left (-2\right )} \mathrm{sgn}\left (d\right ) + \frac{1}{2} \, \sqrt{-x^{2} e^{2} + d^{2}}{\left (x e^{\left (-1\right )} - 2 \, d e^{\left (-2\right )}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-e^2*x^2+d^2)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

-1/2*d^2*arcsin(x*e/d)*e^(-2)*sgn(d) + 1/2*sqrt(-x^2*e^2 + d^2)*(x*e^(-1) - 2*d*e^(-2))